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Are You Killing Time? Predicting Smartphone Users’ Time-killing Moments via
Fusion of Smartphone Sensor Data and Screenshots
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Time-killing on smartphones has become a pervasive activity, and could be opportune for delivering content to their users. This
research is believed to be the first attempt at time-killing detection, which leverages the fusion of phone-sensor and screenshot data.
We collected nearly one million user-annotated screenshots from 36 Android users. Using this dataset, we built a deep-learning fusion
model, which achieved a precision of 0.83 and an AUROC of 0.72. We further employed a two-stage clustering approach to separate
users into four groups according to the patterns of their phone-usage behaviors, and then built a fusion model for each group. The
performance of the four models, though diverse, yielded better average precision of 0.85 and AUROC of 0.76, and was superior to that
of the general/unified model shared among all users. We investigated and discussed the features of the four time-killing behavior
clusters that explain why the models’ performance differ.
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1 INTRODUCTION

Researchers have leveraged smartphones’ capabilities to engage individuals in a variety of tasks, including mobile
learning exercises [11], just-in-time interventions [17], mobile self-reports [58], and crowdsourcing tasks [16]. In recent
years, commercial platforms have also started doing so to obtain crowdsourced data, such as locale information1 [3, 82]
and labeled data2 [15, 16]. However, given human beings’ limited attentional resources, a crucial problem for anyone
delivering content to phones is how to make it stand out from the feast of other incoming information. One mainstream
approach to achieving this is to predict moments at which users are receptive to such content, e.g., the content related
to notifications [55, 62, 65], questionnaires [62], and reading material [19, 62] explored in prior studies.

Moments of “attention surplus” [64] constitute another opportunity for such detection attempts. Pielot et al. [64],
for example, attempted to detect one kind of "attention surplus" state – boredom – but reported that it was very
challenging to achieve high performance in both recall and precision. One reason for these reported difficulties may be
that phone-checking had become a pervasive and habitual behavior [18], thus making it hard to distinguish between
the checking due to attention surplus and the checking for specific purposes. Another reason may be that boredom is
unobservable by phone sensors. Beyond boredom, however, research has shown that mobile-phone use is not always
1https://maps.google.com/localguides
2https://play.google.com/store/apps/details?id=com.google.android.apps.village.boond
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associated with a purpose [27], but is often engaged in habitually simply to pass the time [49, 57]. In other words, a
considerable proportion of phone usage is either accompanied by, or is primarily, "time-killing" behavior: i.e., filling
periods that are perceived as free and/or boring [10, 27, 64], such as while waiting for a train to arrive at its destination,
or attending an uninteresting speech [35]. In such situations, some people tend to seek stimulation on their phones to
alleviate boredom, to achieve a sense of having escaped, or just to pass the time. Therefore, it is logical to assume that
during these time-killing moments, individuals will be more receptive than usual to content that researchers, platforms,
and others send to their phones.

In light of the above-mentioned challenges, coupled with the compound nature of “attention surplus” itself, we
propose to detect time-killing moments, considered as behavioral outcomes of attention surplus, whose patterns
may be observable from users’ phone activities. Also, given the known difficulty of detecting attention surplus using
phone-sensor data alone, our approach to time-killing detection leveraged screenshot data, which we expected would
reveal rich temporal, textual, graphical, and topical information about people’s phone usage [8].

Accordingly, we developed an Android research application that automatically collected smartphone screenshots
and phone-sensor data, and an interface that allowed its users to efficiently annotate time-killing moments on the
screenshots. Data collection with 36 participants over 14 days yielded a dataset of 967,466 pairings of annotated phone-
sensor data with screenshots, covering 1,343.7 hours of phone usage. Using this dataset, we built a deep-learning-based
fusion model that achieved a precision of 0.83 and an Area Under the Receiver Operating Characteristics (AUROC) of
0.71. To further improve the model’s performance by taking account of differences in the participants’ time-killing
behaviors, we employed two-stage clustering that grouped people with similar phone usage behaviors into four groups,
and built a fusion model for each group. The four resulting models’ collective average precision and AUROC went up to
0.85 and 0.76, respectively: i.e., better than those of the general model (i.e., the one shared among all users). However,
the four models achieved quite different performance on many metrics, and to obtain insights into these differences, we
delved into the characteristics of each user group’s phone-usage behavior as well as the important features learned
by their respective models that were positively and negatively correlated with time-killing moments. The results of
that investigation help explain both how and why the effectiveness of sensor data and phone screenshots for detecting
time-killing moments varied across user clusters.

This paper makes the following three major contributions to the literature on phone-usage behavior.

1. It presents the development of a deep-learning-based fusion model that detects smartphone users’ time-killing
moments with an AUROC of 0.71.

2. It demonstrates that building such models for user groups clustered according to their phone-usage behaviors
can achieve better overall model performance, and that all group-specific models may achieve significantly
better performance than the general model.

3. It shows how and why the effectiveness of sensor data and phone screenshots for detecting time-killing moments
vary across different time-killing behavioral patterns.

2 RELATEDWORK

2.1 Interruptibility, Breakpoint, and Opportune Moment Prediction

Many studies have employed machine-learning techniques to predict interruptible moments, breakpoints, and opportune
moments. For instance, Pejovic et al. [60] achieved the predictions of mobile interruptibility with a precision of 0.72.
Others have focused on predicting opportune moments for receiving calls and notifications. For example, Fisher et
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al. [24] built personalized models to predict such moments in the case of incoming cell-phone calls, and achieved an
average accuracy above 0.96 (see also Smith et al. [73]); and Pielot et al. [63] applied machine-learning techniques to
predict whether users would view an incoming message notification within the next few minutes or not.

Some studies have implemented notification-management systems to reduce interruptions. Mehrotra et al. [52],
for instance, proposed a system based on machine-learning algorithms that automatically extracted rules for phone
users’ preferences about receiving notifications. A similar study by Visuri et al. [81] reported that 81.7% of phone-user
interactions with alert dialogs could be accurately predicted based on user clusters.

Among the researchers seeking to identify opportune moments based on breakpoints, Ho et al. [29] detected postural
and ambulatory activity transitions in real-time. Iqbal and Bailey [33] showed that scheduling notifications at breakpoints
reduced both frustration and reaction times. Okoshi et al. [55], who also developed a breakpoint-detection system for
mobile devices, showed that notifications delivered during breakpoints required 33% less cognitive load than those
delivered randomly. Later, the same authors [56] showed that delaying notification delivery until an interruptible
moment resulted in a significant reduction in user response time. Adamczyk et al. [1] divided breakpoints in tasks into
two types, coarse and fine, and showed that delivering notifications at their predicted best points for interruptions
consistently produced less annoyance, frustration, and time pressure. Adopting the same definition of breakpoint
granularity, Iqbal et al. [32] applied it to statistical models that mapped interaction features to each breakpoint type,
based on task-execution data and video footage. And Park et al. [59] used built-in sensors to detect social contexts,
which in turn enabled them to identify four distinct types of breakpoints, all of which were deemed suitable for the
delivery of deferred smartphone notifications.

Detecting moments when device users want to engage with content has also been a focus of considerable research
effort. Sarker et al. [70], for example, sought to identify moments for delivering notifications that would result in
maximum engagement. Similarly, Choi et al. [17] built a mobile intervention system for preventing prolonged sedentary
behaviors, and showed that contextual factors and cognitive/physical states were good predictors of decision points.
Turner et al. [78] decomposed notification interaction into three stages – reachability, engageability, and receptivity
– and developed models for predicting when phone users reached each of them. Pielot et al. [62] built a model that
predicted whether their participants would engage with different types of content they were offered, which achieved a
success rate 66.6% higher than the baseline. A few other detection studies have been focused on notification recipients’
attention. For example, Steil et al. [74] predicted whether people’s primary attentional focus was on their handheld
mobile devices, and proposed “attention forecasting”, which is similar in spirit to user-intention prediction.

Another strand of research on attention prediction involves identifying "attention surplus" moments and timing the
delivery of specific content and tasks accordingly. Such content and tasks have thus far included reading material [20, 62],
learning material [11, 21, 31], interventions [17, 53, 71], questionnaires [28, 62], and crowdsourcing tasks [16], among
others. For example, Pielot et al. [64] deemed moments of boredom to be moments of attention surplus, and detected
them using phone logs: an approach that achieved 0.83 AUROC. However, they obtained a high number of false
positives, which they felt would lead to user annoyance, and therefore tuned their model to strike an optimal balance
between recall and precision. Based on boredom levels detected via phone-sensor data, Dingler et al. [21] delivered
micro-learning reminders to language learners, and their results suggested the feasibility of identifying moments of
boredom as mobile learning opportunities. Cai et al. [11] developed WaitSuite, which detects various types of moments
when its users are waiting for something to happen, and delivers micro-learning tasks during them. Similarly, Inie and
Lungu [31] detected when users were about to become unproductive due to visiting time-wasting websites, blocked
such visits, and delivered learning exercises instead.
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In this paper, we aim to predict time-killing moments, i.e., ones in which people do things to pass or fill time using
their smartphones. Killing time, though conceptually similar to boredom, is nevertheless discernibly different from it.
Specifically, boredom is an individual’s psychological state, which is unobservable, and can exist within a task if that
task is causing fatigue and/or is mundane or routine [37]. Killing time, on the other hand, is an explicit and observable
behavior and is usually performed when people are bored or micro-waiting. As such, instead of detecting boredom –
which can take place at any point, even in the middle of a person’s primary task, when notification delivery may be
inopportune – our aim is to detect moments at which a phone is being used explicitly to kill time [31], which are ipso
facto opportune for content delivery.

2.2 Phone-usage Research

The prevalence and abundance of smartphone apps have drawn researchers’ attention to identifying specific patterns
of phone usage. One of the two main strands of such research focuses on such patterns as a source of insights into
phone users’ other behaviors, while the other uses computational approaches to distinguish them and then uses that
data to predict specific forms of phone use.

Several studies have utilized self-report methods such as interviews and diaries. For instance, Palen et al. [58]
investigated mobile usage via a voicemail diary study. However, because self-report methods are subject to recall
biases [22, 25], quantitative analysis of phone-usage logs is becoming increasingly popular [23, 85, 87]. For example,
Böhmer et al.’s [7] large-scale study based on logged application usage found that news applications were most popular
in the morning; and that game-playing mostly occurred at night. Xu et al. [85] also found differential patterns by app
type, e.g., that sports apps were more frequently used in the evening. Falaki et al. [23] distinguished between two broad
types of intentional use activities-user/phone interaction, and app use-and found that strong diversity in users’ behavior
was linked to different purposes for using phones. Canneyt et al. [80] revealed how app-usage behavior was disrupted
during major political, social, and sporting events. And Li et al. [47] studied the long-term evolution of mobile-app
usage, and found that the diversity of app-category usage declined over time, whereas the diversity of the individual
apps used increased.

Lukoff et al. [49] identified situations in which people felt a lack of meaning while using their phones, which
prominently included passively browsing social media, consuming entertainment, and habitual use. They also discovered
that some users did not always use their phones for a purpose, but rather, as micro-escapes from negative situations.
Hiniker et al. [27] likewise reported "ritualistic" uses of phones, which tended to be habitual. Another habitual phone
usage is "phubbing", i.e., the habit of snubbing someone in favour of a mobile phone. As Al-Saggaf et al. [5] have
suggested, individuals engage in phubbing while they are experiencing negative emotions such as boredom, loneliness,
and fear of missing out. In a different study, Al-Saggaf and colleagues [4] reported that trait boredom could predict
phubbing frequency.

A growing body of work involves attempts to construct models of phone usage. Kostakos et al. [43], for instance,
developed a Markov state transition model of smartphone screen use. Jesdabodi et al. [36] identified phone users’
behavioral states, and showed that morning and evening routines were both mostly marked by communication and
gaming activities. The same study also found that the usage of timer apps was less apparent on weekend mornings than
on weekday mornings. Some other work has focused on understanding differences in usage features across distinct
user clusters. Zhao et al. [89] studied app usage with a two-step clustering approach and revealed clusters of users
including “night communicators”, “evening learners”, and “screen checkers”, among others. Jones et al. [38], on the
other hand, identified three clusters of users: “checkers”, “waiters” and “responsives”. And Katevas et al. [39], based on
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a combination of phone-use log data and experience-sampling method data, identified five types of mobile-phone use:
“limited use”, “business use”, “power use”, “personality-induced problematic use”, and “externally induced problematic
use”.

Finally, because log data are limited to system events like screen events and app states, some researchers have used
screenshots and video recordings to study phone usage. For example, Brown et al. [9] combined screen-captures of
iPhone use with recordings from wearable video cameras, and showed that video data illuminated various aspects of
people’s interactions with their phones. Subsequently, Brown et al. [10] collected screen recordings of phone use and
audio recordings of ambient talk, and identified various situations in which people engaged in phone usage with their
"free" attention and another activity simultaneously, e.g., during television viewing. Another such situation was killing
time. For example, they found users engaged in quick games or social-media checking while waiting for a friend to
arrive or for an event to start. Reeves et al. [68] showed how screenshots could be used to unobtrusively collect valuable
data on individuals’ digital life experience: e.g., switching among content categories and devices across a day. Later,
Reeves et al. [8] explored how textual and graphical features changed during sessions. For instance, they measured
aggregate-level trends in word count, and aggregate-level stability in image complexity throughout the day, and found
that word and image velocity both decreased late at night. However, some of their participants interacted with more
image-based content during the overnight hours.

Some other researchers have used deep-learning models trained on large amounts of Graphical User Interface (GUI)
data to detect screenshots. For instance, Beltramelli’s [6] Pix2Code applies an end-to-end neural image captioning
model to generate code from a single input image, with better than 0.77 accuracy across various platforms. Similarly,
Chen et al. [14] utilized a CNN-RNN model to generate GUI skeletons from screenshots. Other work focused on locating
UI elements on screens, such as by White et al. [84] , has used YOLOv2 [67] to automatically identify GUI widgets in
screenshots. Chen et al. [13] built a gallery of large scale of GUI designs by applying a Faster RCNN model [69] ; and
Zhang et al. [88] proposed an on-device model capable of detecting UI elements.

Unlike any the studies reviewed above, however, our work focuses on detecting time-killing moments using a fusion
of phone-sensor and screenshot data. In the remaining of the paper, we present our methodology and results.

3 DATA COLLECTION

3.1 Input-data Selection

Screenshot collection has become a popular method in HCI research, because it allows researchers to collect quantitative
and qualitative data simultaneously [40, 44, 45, 76] in high granularity and rich detail [8]. Along with information
about people’s interactions with their phones, it can help researchers reconstruct both moment-to-moment phone
use and wider usage patterns [51, 66, 68, 86]. Due to these advantages, we aimed to leverage screenshot data, along
with phone-sensor interaction information (including user/phone interaction and phone status), to extract features
that characterized our participants’ app usage and switching patterns. We then attempted to associate such usage
information and patterns with time-killing vs. non-time-killing moments.

3.2 Research Instrument

We developed an Android research application, called Killing Time Labeling (KTL), to collect annotated screenshots and
phone-sensor data (i.e., Android accessibility events, screen status, network connections, phone volume, application
usage, and type of transportation). KTL also captures the notifications its users receive, the times at which they receive
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(a) Main screen (b) Labeling screen (c) Screen after labeling (e) Screen after selection(d) Upload selection

Fig. 1. User interfaces for the main functions of the Killing Time Labeling application

them, and how they are dealt with. The background service that automatically collects data is activated within a
12-hour timeframe every day, the default being from 10:00 a.m. to 10:00 p.m., but the start time and end time are
both user-adjustable, meaning that the data might be collected for more than 12 hours per day in some cases. During
whatever 12+-hour window the user has chosen, his/her phone-sensor data is collected every five seconds. Screenshots
are also captured every five seconds, but only when the phone screen is on.

We designed a user interface for KTL that allowed our participants to easily select groups of screenshots via drag-
and-drop for data labeling (see Fig. 1). A detailed demonstration of this data-labeling procedure is provided in our
supplemental video. The participants were instructed to review and annotate screenshots in accordance with the
situations in which they were taken. For each screenshot, participants had five annotation options: 1) killing time
and available for viewing notifications; 2) not killing time but available for viewing notifications; 3) killing time but
unavailable for viewing notifications; 4) not killing time and unavailable for viewing notifications; and 5) unidentifiable,
i.e., the participant could not be certain of his/her time-killing state or had forgotten it. Each time s/he manually
selected and annotated a series of screenshots, the participant was to report his/her actual activities3 at the time those
screenshots were taken. We instructed the participants to annotate them as “killing time” as long as they felt that their
mobile-phone usage at the time was to pass time, and otherwise to annotate it as "not killing time". Regarding the
availability label for viewing notifications, we instructed them to annotate screenshots as “unavailable for viewing
notifications” if they positively did not want to be interrupted or to see any notifications when using the app, and
otherwise to annotate them as “available”. Because KTL invalidated screenshots after two days, meaning they could no
longer be annotated, we also instructed the participants to complete their labeling before going to bed every day.

All screenshots were reduced in size and temporarily stored in the local storage of the participants’ respective phones
before they were reviewed, labeled, and manually uploaded to our server. The participants had the right not to upload
any given screenshot, e.g., because it contained sensitive information. Phone-sensor data, on the other hand, was
automatically uploaded by KTL whenever a participant’s phone was connected to the Internet, to avoid such data taking
up too much storage space. Also, to avoid impacting the participants’ data plans, KTL only did so via WiFi networks,

3This question was adopted from previous research [46].
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unless a user overrode this feature and chose to upload using the cellular network. The participants were informed of
all these rules in a pre-study meeting (the other purposes of which are detailed in section 3.3, below).

KTL also delivered notifications linked to experience sampling method (ESM) questionnaires and to various other
types of content. That other content consisted of 1) crowdsourcing tasks4 [15, 16], 2) non-ESM questionnaires5 [62], 3)
advertisements [62], and 4) news items [61, 62, 64]. KTL only sent such notifications within the user’s chosen 12+-hour
timeframe and only when his/her screen was on. Each notification was randomly selected from among the four types
listed above, and delivered at random intervals of not less than one or more than three hours. Five minutes after each
notification arrived, an ESM questionnaire was also sent, asking the participant to report his/her awareness of and
receptivity to that notification, as well as what context s/he was in at the moment it had arrived.

3.3 Study Procedure

Prior to data collection, due to the COVID-19 pandemic, we allowed our participants to choose between remotely
and physically attending a pre-study meeting, during which the researchers helped them install KTL on their phones,
explained how to use it, and walked them through the study procedure. We told them that we expected them to annotate
all screenshots that were automatically captured by KTL every day, and that 14 days of active participation were needed
for their data to be useful to us. Thus, for each day they did not provide annotated screenshots, their participation
was extended by one day. On their respective final days of participation, to aid future analysis, they completed four
additional questionnaires that measured their boredom proneness [75], smartphone addiction [48], inattention [41], and
perceived acceptability of time-killing detection being deployed on their phone. In addition, we invited all participants
to two optional semi-structured interviews, the first of which was held after they had contributed data for seven full
days, and the second, after their participation was complete. In those interviews, we asked them about their labeling
processes, time-killing behaviors and preferences, and how they killed time (both typically and during the study). Those
who completed 14 days of data collection were paid NT$1,350 (approximately US$44). Those who participated in the
mid-study interview were paid an additional NT$150 (US$5), and those who were interviewed after the study, another
NT$250 (US$8). The study was approved by our university’s Institutional Review Board (IRB).

3.4 Recruitment and Participants

We selected participants with various occupations, in the expectation that they would have different time-killing
patterns. Also, to ensure that sufficient data were collected, we selected participants who used their mobile phones
more than one hour a day, according to their self-reporting in a screening questionnaire. We recruited participants
primarily via several Facebook groups aimed at matching researchers with study participants in our country, but also
posted a recruiting message on Facebook pages for the local community in the hope of further diversifying our subjects’
backgrounds. Through this process, a total of 55 participants were recruited, including 12 who participated in a pilot
study. Of the remaining 43 participants, one withdrew before data collection commenced, two did not complete the
experiment, and four others were excluded as being outliers (i.e., they had annotated more than 95% of their data as
“killing time”). As a result, data from 36 people were used for training our time-killing detection model. Of those 36,
32 took part in both optional interviews, two only in the mid-study interview, and two others, only in the post-study

4The crowdsourcing questions were inspired by Google Crowdsource and Local Guide, two platforms that aim to improve Google Maps and various other
Google services through user-oriented training of multiple algorithms.
5The questionnaire was inspired by Google Opinion Rewards, which offers rewards to its users who answer surveys and opinion polls on a variety of
topics.
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Table 1. Summary of data collection

Labels Uploaded Not uploaded Total
Killing time and available for viewing notifications 606,760 (51.1%) 29,160 (2.5%) 635,920 (53.6%)
Killing time but unavailable for viewing notifications 135,380 (11.4%) 2,101 (0.2%) 137,481 (11.6%)
Not killing time but available for viewing notifications 202,327 (17.1%) 17,081 (1.4%) 219,408 (18.5%)
Not killing time and unavailable for viewing notifications 118,313 (10.0%) 9,071 (0.8%) 127,384 (10.7%)
Unidentifiable 0 (0.0%) 66,152 (5.6%) 66,152 (5.6%)
Total 1,062,780 (89.6%) 123,565 (10.4%) 1,186,345 (100.0%)

interview. All 36 participants were aged between 20 and 54 (M = 27.4, SD = 6.8), with 16 identifying as male and 20 as
female. Half were students, and the other half in employment.

3.5 Data Collection

Most participants provided data on 12 hours of phone usage per day, but six voluntarily extended this to 13-15 hours;
one, to 17.5 hours; and another, to the whole day. In total, 1,186,345 screenshots were annotated (per-participant M =
32,954.0, SD = 15,557.9), which represented approximately 1,633.8 hours of phone use. Among these 1,186,345 annotated
data points, 1,062,780 (89.6%) screenshots were uploaded; a per-participant average of 29,521.7 screenshots (SD =
13,544.9). Thus, the initial dataset that we collected for analysis consisted of 1,062,780 annotated screenshots and the
phone-sensor data associated with the moments at which they were captured. Two-thirds (n = 773,401) of uploaded
and non-uploaded screenshots were annotated as “killing time”, and somewhat over a quarter (n = 346,792) as “not
killing time”, with the remaining 5.6% (n = 66,152) being “unidentifiable” (see Table 1). The above distribution cannot
perfectly represent the participants’ actual phone usage, insofar as some screenshots were not annotated and/or not
uploaded. Nevertheless, we are confident in its general outlines, e.g., that there were more time-killing moments than
non-time-killing ones, and that the participants more often self-reported being available for viewing notifications than
otherwise.

Because the focus of this paper is on how to predict time-killing moments, it will not systematically discuss the
interview data, collected notification data, ESM results, or the results of the three questionnaires that were not related
to our approach’s user acceptance. Those other datasets will instead be used in future research.

3.6 Feature Selection and Extraction

To predict time-killing moments, we extracted two kinds of feature sets from the phone-sensor data: phone context
and user interactions. For each of these feature sets, we created two temporal ranges, one describing the phone at the
moment when a screenshot was taken, and the other, the characteristics of the phone-use session during which it was
taken. We defined a phone-use session as a continuous use of the phone during which any brief screen-off interval
was not longer than 45 seconds, based on the findings of van Berkel et al. [79], that using the 45-second threshold
separating two sessions was more accurate than the others. Thus, if more than 45 seconds had passed since the last
screen-off event, the current usage was considered as a new session. In addition, inspired by our interview data and
prior research findings [64] suggesting that some phone events or user actions occur intensively during time-killing, we
created features that measured the frequency of various types of phone and interaction events during nine past-time
windows, ranging from a minimum of 30 seconds to a maximum of 3,600 seconds (e.g., frequency of scrolling within
the previous 30 minutes). We excluded data from the first hour of each person’s participation day, because a large
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Table 2. The sensor features used in the study

Phone Context Current Characteristics Current session characteristics (accumulated up to the
current screenshot record)

Transportation
Mode

Physical activity (i.e., not moving, on foot, in vehicle,
or on bicycle)

Cumulative time of {not moving, on foot, in vehicle, on
bicycle}

Was moving (i.e., on foot, in vehicle, or on bicycle) Majority of physical activity

Type of Day Day of the week (0-6)
Was weekend (i.e., Saturday, Sunday)

Time of a Day Hour of the day in 24-hour notation (0-23)
Was meal time (11:00 a.m.-12:59 p.m., 5:00 p.m.-6:59
p.m.)

Battery Status
Phone battery level {AVG, STD, MIN, MAX, MED} Phone-battery level
Phone was charging / not charging Charging count
If charging over AC or USB Cumulative charging time

Screen Time {AVG, STD, MIN, MAX, MED, SUM} Screen time
Screen
Orientation Portrait / landscape mode

Foreground App
Name of the app in the foreground Count and frequency of app switches
Package name of the app in the foreground Count of used apps
Category of the app in the foreground Cumulative usage time of the 15 most frequently used

app categories and all remaining app categories com-
bined into one category group.

Network Info
{WiFi, Mobile} network was available / unavailable Cumulative time the phone was connected to the {WiFi,

Mobile} network
{Type, operator} of the network the phone connected
to

Cumulative time the phone was not connected to any
network

Was connected to the network

Ringer Mode Silent / vibrate / normal Cumulative time of {silent, vibrate, normal}
Was adjusted

Audio Mode Ringing / in call / in communication / normal Cumulative time of {ringing, in call, in communication,
normal}
Call count

Stream Volume Volume of streams, e.g., music playback, notification,
phone calls, phone ring, system sounds

{AVG, STD, MIN, MAX, MED} Volume of stream {music
playback, notification, phone calls, phone ring, system
sounds}
Volume of stream {music playback, notification, phone
calls, phone ring, system sounds} was adjusted

Call Status Device call state: idle / off-hook / ringing
Usage Current Characteristics Current session characteristics (accumulated up to the

current screenshot record)
Screen-on
Events

Count of Screen-on events during the past
180/300/600/900/1,800/3,600 seconds

{count, frequency} of screen-on events

Accessibility
Events

Count of {clicking, long-clicking, scrolling,
hover enter/exit, setting-input focus, changing-
the-text, selecting} events during the past
30/60/180/300/600/900/1,800/3,600 seconds

{count, frequency} of {clicking, long-clicking, scrolling,
hover enter/exit, setting-input focus, changing-the-text,
selecting} events

Note. * All time-related calculations were in seconds

portion of such data could not allow us to compute these features. As a result, the final dataset for developing the model
consisted of 967,466 annotated screenshots, from which 183 features were derived, as shown in Table 2. The 1,181 apps
used during the study by our participants were placed in 56 categories based on their Google Play Store categorizations
and prior literature [89].
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Fig. 2. Illustration for the architecture of our proposed model, which takes the input composed of the phone-sensor data and the
screenshots (collected within a certain time window, e.g., 30 seconds) and predicts the user’s intention on time-killing.

4 MODEL DESIGN

The goal of our proposed method is to leverage the rich information embedded in the phone-sensor data and screenshots
to detect participants’ time-killing moments. We adopt deep-learning, which learns the pattern in an end-to-end manner.
Specifically, our proposed model (shown in Fig. 2) is composed of three main subnetworks: 1) an encoder E𝑆 built upon
DeepFM [26] and an LSTM [30] that extract sensor features from phone-sensor data, 2) an encoder E𝐼 based on the
ResNet and an LSTM that encode the sequences of screenshots into visual features, and 3) a fusion subnetwork F that
adopts an attention mechanism followed by fully-connected layers to fuse the sensor features and the visual features
into the final prediction outcome, i.e., time-killing vs. non-time-killing. More details of these subnetworks are provided
in the following sections.

4.1 Encoder E𝑆 of Phone-sensor Data

Given a sequence of phone-sensor data collected at several time steps within a certain time window (ideally these
time steps are evenly distributed within a given time window), denoted as X𝑆 = {𝑥𝑆

𝑘
}𝐾
𝑘=1, where 𝐾 is the number of

time steps, the encoder E𝑆 which is built upon a DeepFM module D𝑆 and a 3-layer LSTM module L𝑆 turns X𝑆 into
the sensor feature F 𝑆 . As our phone-sensor data 𝑥𝑆

𝑘
contain both continuous and categorical values (e.g., a phone

battery level is a continuous value, whereas a ringer mode is a categorical value), our DeepFM module D𝑆 adopts the
DeepFM [26] framework that extracts a feature representation 𝑣𝑆

𝑘
= D𝑆 (𝑥𝑆

𝑘
) for each 𝑥𝑆

𝑘
. Note that the architecture of

our DeepFM module D𝑆 is almost identical to the one proposed in [26], except that it uses a 128-dimensional vector in
the last fully-connected layer in order to fit into the size of 𝑣𝑆

𝑘
. Specifically, the feature vectors {𝑣𝑆

𝑘
}𝐾
𝑘=1 extracted from

the sensor data {𝑥𝑆
𝑘
}𝐾
𝑘=1 are sequentially fed into the LSTM module L𝑆 to model the temporal variations in {𝑥𝑆

𝑘
}𝐾
𝑘=1,

which then generates a 256-dimensional sensor-feature vector F 𝑆 .

4.2 Encoder E𝐼 of Screenshots

The visual encoder E𝐼 which extracts the visual feature F 𝐼 from a stack of 𝐾 screenshots X𝐼 = {𝑥 𝐼
𝑘
}𝐾
𝑘=1 is composed

of a ResNet module D𝐼 and a 3-layer LSTM module L𝐼 . All the screenshots are resized to 224 × 224 pixels, regardless
of whether they were taken horizontally or vertically; then they are fed into the ResNet module D𝐼 to extract the
feature representation 𝑣𝐼

𝑘
= D𝐼 (𝑥 𝐼

𝑘
), where D𝐼 adopts the ImageNet-pretrained Resnet-101 backbone and the size of 𝑣𝐼

𝑘
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is 7 × 7 × 2048. Similar to the procedure of encoding phone-sensor data, these extracted features {𝑣𝐼
𝑘
}𝐾
𝑘=1 are taken

as a sequential input for the LSTM module L𝐼 to derive their visual feature F 𝐼 (which is 256-dimensional) of X𝐼 . For
both LSTM modules L𝑆 and L𝐼 , the dimensions of all the hidden state, cell state, and the hidden layer are set to 512
respectively. Note that although L𝑆 and L𝐼 have a similar architecture, they are trained independently and do not share
any weight.

4.3 Fusion Subnetwork F over Sensor and Visual Features

After obtaining the sensor feature F 𝑆 and visual feature F 𝐼 from phone-sensor dataX𝑆 and screenshotsX𝐼 , respectively
, we used a fusion subnetwork F that jointly considers the high-level information from these two features in order to
detect participants’ time-killing behaviors. To achieve this, instead of concatenating two features and utilizing a simple
classifier to perform a multi-modal fusion, we introduced an additional multi-fusion layer that takes both features as
inputs to predict the reweighting coefficients 𝛼𝑆 and 𝛼𝐼 (i.e., analogous to the importance) for both feature dimension
F 𝑆 and F 𝐼 ; The reweighted features, denoted as F̃ 𝑆 = 𝛼𝑆 ⊗ F 𝑆 and F̃ 𝐼 = 𝛼𝐼 ⊗ F 𝐼 , are then concatenated with the
original F 𝑆 and F 𝐼 , which are further intertwined by several fully-connected layers to generate the final classification
outcome of time-killing or not.

Training Details.We adopted a stage-wise training procedure, in which we first trained the encoders, E𝑆 and E𝐼 ,
independently, followed by training the fusion subnetwork. Specifically, we first attached a fully connected layer to the
end of the encoder E𝑆 and E𝐼 individually. Then, the layer maps the sensor feature F 𝑆 and the visual feature F 𝐼 to the
output of time-killing detection respectively, i.e., the whole encoder together with the attached fully connected layer
becomes a classification model and can be pre-trained via using our collected dataset and a classification objective of
cross-entropy. After pre-training both encoders till they converged, we removed the attached fully connected layers
and fixed the weights of encoders. Then we trained the fusion subnetwork F via the cross-entropy loss. We chose to
follow a stage-wise training procedure because it performs better than training from scratch. We adopted the Adam
optimizer [42] for training the model. In pretraining the encoder E𝑆 , we set the batch size 512 and the learning rate
10−3, while for pretraining the encoder E𝐼 , we set a batch size 196 and the learning rate 10−5. Lastly, for training the
fusion subnetwork F, we set a batch size 196 and the learning rate 10−5. Our model is implemented with PyTorch and
trained using 8 Tesla V100 GPU cores.

5 THE FUSION MODEL FOR PREDICTING TIME-KILLING MOMENTS

In the first subsection below, we describe our experimental environment, configuration, and evaluation metrics. In
the second, we report on the performance of our fusion model for predicting time-killing moments, as compared to
models that used only phone-sensor data and only screenshot data, respectively. Lastly, subsection 5.3 discusses how
phone-sensor and screenshot data complemented each other in the fusion model.

5.1 Experiment

5.1.1 Dataset. We paired each labeled screenshot with phone-sensor data according to the time at which that screenshot
was taken. To predict whether a screenshot was labeled as time-killing or non-time-killing, we used features derived
from the screenshots and their paired sensor data 30 seconds (i.e., six screenshots) prior to the predicted one. In other
words, a sequence of data including both the predicted screenshot and the data for predicting it contained seven data
pairs. We made sure that such sequences did not overlap with one another; and that, if a sequence contained fewer than
seven data pairs, we padded it to that length seven by using zero padding, i.e., a whole black image.
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Each participant contributed a different amount of data. Therefore, to prevent our model being overly biased towards
particular participants who contributed much more data than others did, we sampled 20,000 screenshots from each
participant to create our training dataset. Such sampling was random, except insofar as we ensured that it contained
1) data collected on both weekends and weekdays, and 2) exactly equal numbers of time-killing and non-time-killing
instances. For the testing dataset, on the other hand, we did not seek to strike this balance, but instead followed the
original distribution, such that the evaluation of the model would more accurately reflect the time-killing distribution
that one would observe in the real world.

5.1.2 Evaluation Metrics. Our testing dataset had more time-killing instances than non-time-killing ones, in the ratio
7:3. We made many computations to compare model performance, but here, we will focus on ROC-curve (Receiver
Operating Characteristics) and PR-curve (Precision Recall). The ROC curve plots the true positive rate against the false
positive rate at various classification thresholds for time-killing classification, and AUROC, i.e., the area under the
ROC curve, indicates better performance where its values are higher. The PR-curve allowed us to observe the precision
score against the recall score at various classification thresholds. We prioritized the precision of the prediction over
recall, because the higher the former is, the fewer non-time-killing moments will be falsely predicted as time-killing
moments, and thus, fewer notifications will be mistakenly sent to the user at these moments. For the same reason, we
also assessed specificity, which measures the prediction’s true negative rate.

5.1.3 Model Evaluation. To evaluate the performance of the model, we performed three-fold cross-validation on the
dataset. As noted earlier, two-thirds of the data from each participant were used for re-sampling, and formed a training
dataset, with the rest forming the test dataset. We made sure that when we divided the dataset, the order among the
screenshot and phone-sensor pairs was maintained. In evaluating the performance of the fusion model for predicting
time-killing moments, we also compared it against two other models, which respectively used only phone-sensor data
and only screenshot data. We describe all three models in more detail below.

• Fusion (Sensor+Screenshot) - Used both phone-sensor data and screenshot data; model design as described
earlier.

• SensorOnly - Used the phone-sensor data encoded by E𝑆 to perform time-killing prediction, with an additional
fully connected layer attached to E𝑆 acting as the linear classifier.

• ScreenshotOnly - Used phone-screenshot data encoded by E𝐼 to perform time-killing prediction, with an
additional fully connected layer attached to E𝐼 as a linear classifier.

5.2 Result

The models’ overall performance metrics are presented in Table 3, which uses a classification threshold of 0.5. Fig. 3a
and 3b show their ROC curves and PR curves. Overall, the fusion model achieved the best AUROC among the three
models, as shown in both Table 3 and Fig. 3a. The fusion model’s prediction of a given moment as being a time-killing
one was the most accurate among the three models. Moreover, as shown by the PR curves, the fusion model achieved
higher precision with high recall than the other two models, and its specificity score was also significantly higher than
theirs. These results imply that taking account of both sensor data and screenshot data makes it less likely to falsely
predict a non-time-killing moment as a time-killing one than when only one source or the other is considered. The
SensorOnly model achieved the lowest performance across all metrics except recall. As shown in both Fig. 3a and Fig. 3b,
it had notably lower precision across classification thresholds than the other two models, suggesting that many of the
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Table 3. The three models’ time-killing prediction task performance

Model Accuracy Precision Recall AUROC Specificity
Fusion (Sensor+Screenshot) 0.76 0.83 0.81 0.72 0.62
SensorOnly 0.74 0.8 0.85 0.65 0.45
ScreenshotOnly 0.76 0.81 0.86 0.67 0.49

(a) ROC Curves (b) PR Curves

Fig. 3. Two performance measurements of our proposed fusion model (i.e., Sensor+Screenshot), its variants (i.e., SensorOnly and
ScreenshotOnly). Note. Point on the curves represents a classification threshold equal to 0.5.

moments it predicted as time-killing were incorrect. This was because some phone states or interactions that occurred
mainly during time-killing by one group of users often occurred during the non-time-killing-moments of another
group, making it difficult to differentiate these two kinds of moments across users with different behavior patterns: a
phenomenon that will be explored in the Section 6. The ScreenshotOnly model, on the other hand, had a better ability to
distinguish between them, suggesting that phone-screenshot data were more informative about time-killing moments
than sensor data were. That being said, the inclusion of phone-sensor data improved the performance of the fusion
model.

5.3 Examples of How Fusing Phone-sensor Data and Screenshots Helped us Recognize Time-killing vs.
Non-time-killing Behaviors

In our view, the fact that fusing phone-sensor data and screenshots yielded the best performance in detecting time-
killing moments implies that these two data sources to some extent complemented each other. To explore this possible
phenomenon, we inspected cases in our test dataset in which a time-killing moment was correctly detected by the
fusion model, but incorrectly detected by either or both of the SensorOnly and ScreenshotOnly models.

To facilitate this exploration and our sense-making of these cases, we created attentionmaps from the final convolution
layer of the ScreenshotOnly model, using a popular technique called Grad-CAM [72]. These attention maps helped us
to identify regions in the screenshots that the fusion/ScreenshotOnly model considered influential on its time-killing
behavior detection. For instance, the top row of Fig. 4 provides examples in which both the ScreenshotOnly and fusion
models correctly recognized a time-killing moment that was mistaken as a non-time-killing one by the SensorOnly
model. We suspect that the SensorOnly model incorrectly recognized such sequences of data because a series of text
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00:00:00 00:05:00 00:10:00 00:20:00 00:25:0000:15:00

00:00:00 00:05:00 00:10:00 00:20:00 00:25:0000:15:00

Fig. 4. Example attention maps, produced by Grad-CAM [72] and the ScreenshotOnly model, comprising a sequence of time-killing
screenshots in the top row, and a sequence of non-time-killing ones in the bottom row. Images have been blurred for privacy reasons.

changed events were detected, which was more likely to occur when not killing time. On the other hand, we suspect that
the ScreenshotOnly model detected it correctly because it recognized the layout of the user interface of Instagram’s Story
feature, which tended to be associated with time-killing moments. In other words, although the first two screenshots
showed a Story post feature on Instagram, and the last three, participants replies to others’ stories, the model knew the
layout of the Story feature, and thus stuck to its prior prediction that time-killing was taking place. The SensorOnly
model, in contrast, could only know that an Instagram application was currently in use, and that typing was occurring,
not the specific feature of Instagram the participants were using (i.e., post, story, or direct message).

The bottom row in Fig. 4, meanwhile, shows a distinctive case in which both the SensorOnly and fusion models
correctly predicted a non-time-killing moment that was incorrectly predicted by the ScreenshotOnly model as a time-
killing one. We suspect that the ScreenshotOnly model misinterpreted this screenshot sequence as a time-killing moment
because it recognized the layout of LINE, a popular instant-messaging, social-media and portal service in Taiwan. In
this case, the participant was discussing an assignment with others via text conversation; however, the participant was
talking to her friend (prompted by the communication icon in the upper-right corner) while, which was often associated
with time-killing moments. The ScreenshotOnly model did not attend to the communication icon in all sequences of
the screenshots, but instead relied mostly on the layout of the chat room. Nevertheless, we observed that the relevant
information was captured in the user’s phone-sensor data: specifically, by the call status and the change of the call
volume (as the sixth screenshot shows). Knowing these pieces of information enabled the fusion model to correctly
recognize this moment as a non-time-killing rather than a time-killing one, in contrast to the ScreenshotOnly model.
There were many similar instances; however, these two vivid examples should suffice to explain why the fusion model
performed best at detecting time-killing moments across nearly all metrics.

6 TAILORING FUSION MODELS TO USERS CLUSTERED BY PHONE-USAGE BEHAVIOR

Inspired by our interview data, we decided to build a prediction model tailored to varied phone-usage behaviors.
Specifically, we learned from the interviews that various distinct time-killing patterns existed among our participants,
who could be grouped based on similarities in their phone interactions, task choices, task switching, audio modes, and so
on. Because we could not group participants based on their time-killing behaviors, assuming that during system runtime
such a label might not be obtainable, we instead grouped them based on their phone-usage behavior, which could be
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(a) (b)

Fig. 5. Scatter plot of session clusters, grouped based on in-session behavioral characteristics

obtained during runtime. Despite the fact that grouping users would inevitably reduce the dataset for training each
individual fusion model, we assumed that a user-group-based model was likely to achieve better overall performance
than general model. Below, we present the group-based model we arrived at using clustering, followed by model
evaluation and our observations about the features of these individual models.

6.1 Clustering Participants Based on their Phone-usage Behavior

We employed two stages of the k-means method [50] to group users hierarchically. First, inspired by Isaacs et al. [34],
we employed clustering to identify distinct phone-usage behavioral patterns. Then, we clustered participants according
to how often their use of the phone belonged to each of the identified phone-usage patterns, based on an assumption
that a user was likely to display more than one such pattern.

6.1.1 Clustering Phone-usage Behavior. Inspired by previous work [34] that used the concept of sessions to cluster phone
usage, we generated participants’ sessions based on the rule suggested by van Berkel et al. [79]: that is, we divided pairs
of sessions using a separation threshold of 45 seconds. This approach resulted in a total of 5,266 phone-usage sessions.
For each of them, inspired by our interview, we computed nine features: 1) session duration, 2) screen-switching
frequency, 3) application-switching frequency, 4 ) scroll-event frequency, 5) text-change event frequency, 6) maximum
and 7) minimum gap durations for scroll events, and 8) maximum and 9) minimum gap durations for text-change events.
We then applied k-means to these sessions, and used the Elbow method [77] to determine the number of clusters. This
revealed the optimal number of clusters as five. The 5,266 phone-usage sessions were grouped into these five clusters,
named A, B, C, D, and E in descending order by cluster size„ whose sizes were 1,882, 1,664, 942, 417 and 361, respectively.

The five groups mainly differed in terms of how actively their members used their phones. For example, Fig. 5a
shows the distribution of the frequency of the participants’ scrolling by the frequency of text-changes in a session,
colored according to the cluster they belonged to; and Fig. 5b, the distribution of the same frequency by the frequency
of app switching. For example, cluster B contained inactive phone-usage sessions, which involved low frequencies
of text-changes, scrolling, and app switching. The sessions in Cluster A, on the other hand, were also marked by
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Table 4. Experimental Results: Clustering Participants by Behavioral and Temporal Characteristics

Group Accuracy Precision Recall AUCROC Specificity
Group 1 0.70 0.73 0.73 0.81 0.81 0.88 0.85 0.81 0.80 0.68 0.76 0.77 0.38 0.54 0.59
Group 2 0.75 0.77 0.77 0.85 0.89 0.91 0.84 0.87 0.84 0.70 0.75 0.78 0.46 0.44 0.55
Group 3 0.80 0.77 0.78 0.91 0.95 0.93 0.87 0.82 0.82 0.68 0.75 0.72 0.39 0.48 0.50
Group 4 0.72 0.74 0.77 0.71 0.74 0.77 0.78 0.78 0.79 0.70 0.73 0.77 0.63 0.69 0.74
Average 0.74 0.75 0.76 0.82 0.84 0.87 0.83 0.82 0.81 0.69 0.75 0.76 0.47 0.54 0.60
General model 0.74 0.76 0.76 0.80 0.81 0.83 0.85 0.86 0.81 0.65 0.67 0.72 0.45 0.49 0.62
Note. The white, light gray, and dark gray backgrounds indicate the results for SensorOnly, ScreenshotOnly, and
Fusion (SensorOnly+ScreenshotOnly) models, respectively.

Table 5. The 15 non-category features most highly correlated (either positively or negatively) with time-killing moments, by user
group

Group 1 corr. Group 2 corr. Group 3 corr. Group 4 corr. General Model corr.
call_count -0.25 screen-on_past_900s -0.22 T_photography_apps -0.18 battery_level -0.40 T_vibration -0.17
is_adjusted_vol_noti -0.25 screen-on_past_600s -0.22 scrolling_past_3600s 0.15 AVG_battery -0.40 scrolling_past_3600 0.15
is_adjusted_vol_ring -0.25 screen-on_past_300s -0.21 screen-on_past_600s -0.15 MED_battery -0.40 call_count -0.15
T_Silent 0.24 screen-on_past_1800s -0.21 screen-on_past_1800s -0.15 MIN_battery -0.39 scrolling_past_1800s 0.14
is_adjusted_vol_voicecall -0.24 call_count -0.21 screen-on_past_900s -0.14 MAX_battery -0.37 T_InComm. -0.14
is_adjusted_vol_sys -0.24 screen-on_past_3600s -0.21 scrolling_past_1800s 0.14 MAX_vol_music 0.36 MIN_battery -0.14
T_game_apps 0.24 screen-on_past_180s -0.21 T_normal_ringer 0.14 AVG_vol_music 0.35 T_ringer_silent 0.13
MAX_vol_ring -0.21 T_InComm. -0.19 screen-on_past_300s -0.14 MED_vol_music 0.33 MED_battery -0.13
MAX_vol_noti -0.21 T_normal_audio 0.19 T_map_apps -0.13 MIN_vol_ring 0.32 AVG_battery -0.13
MAX_vol_sys -0.20 T_ringtone -0.16 scrolling_count 0.13 strm_vol_music 0.32 scrolling_past_900s 0.13
STD_vol_sys -0.19 MAX_vol_sys -0.16 long-clicking_count 0.13 AVG_vol_ring 0.31 T_photography_apps -0.12
STD_vol_noti -0.19 MAX_vol_noti -0.16 T_social_apps 0.13 MED_vol_ring 0.31 scrolling_past_600s 0.12
STD_vol_ring -0.19 T_mobile_network 0.15 scrolling_past_900s 0.13 strm_vol_ring 0.31 battery_level -0.12
MIN_vol_voicecall 0.18 freq_text_changed -0.15 scrolling_past_600s 0.13 AVG_vol_sys 0.31 focus_event_past_3600s 0.12
T_InComm. -0.16 MAX_vol_ring -0.15 screen-on_past_180s -0.12 MAX_vol_sys 0.30 MAX_vol_music 0.12
Note. The T prefix indicates the cumulative time; the green and blue backgrounds indicate positive and negative correlations, respectively, with darker
colors indicating higher correlations.

low-frequency text-changes and relatively low-frequency app switching, but high-frequency scrolling; and those in
cluster D exhibited the highest-frequency app switching of any cluster.

6.1.2 Clustering Users by the Proportions of Five Behavioral Outcomes. Having clustered similar phone-usage behaviors
as described above, we observed that most users performed all five behaviors, but in varying proportions. Therefore,
to group users with similar overall mobile-phone usage, we calculated the proportions of each user’s five outcome
behaviors, and used those proportions to cluster users. The same k-means and Elbow methods as described above were
performed, and the resulting k value for user clustering was 4. Thus, we separated our participants into four groups, in
which the numbers of participants were 11, 11, nine, and five. The positive (time-killing) and negative (non-time-killing)
instance ratios of those four groups were 13:6, 3:1, 81:19, and 3:2, respectively.

6.2 Overall Performance of the Cluster-based Models

We built the same fusion model for each of the four user groups, and examined each one’s average performance
separately via the same three-fold cross-validation approach mentioned in Section 5.1. Table 4, which presents the
respective performance of those four models along with their average performance, shows that both their average
AUROC (0.76) and precision (0.87) were higher than those of the general model (AUROC: 0.72, precision: 0.83). In
terms of individual model performance, all four models’ AUROC values were at least as good as that of the general
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model, with three significantly higher than it; and three models’ precision values were also higher than the general
model’s. These results suggest that dividing users into groups according to their phone-usage behavior and building a
time-killing prediction model for each such user group is beneficial.

We also looked at the correlations between time-killing moments and phone-sensor features for each of these user
groups separately. Table 5 shows the 15 non-category features most highly correlated (either positively or negatively)
with time-killing moments, by user group. In each such group, some features were more correlated with time-killing
moments than their counterparts in the general model, suggesting that clustering users into behavioral groups was also
beneficial to time-killing prediction: i.e., doing so revealed features correlated with time-killing moments specifically
for certain participants, which would not have been revealed had they not been divided into groups. That being
said, the results in Table 4 also show that the performances of the four models varied, suggesting that some user
groups’ time-killing moments might be more difficult than the others’ to predict. We discuss each user group’s model
performance and time-killing behaviors in the next section.

6.3 Model Performance and Behavior by User Group

First, Group 2’s fusion model achieved the best AUROC among the four user groups. It is also worth noting that Group
2’s ScreenshotOnly model achieved better performance than its SensorOnly model for all metrics except specificity,
suggesting that it was accurate in predicting time-killing moments but less so in predicting non-time-killing moments.
When observing features correlated with time-killing moments in Group 2, we found that screen-on events, number
of calls, and volume of communication and ringtone were all negatively correlated with the members’ time-killing
moments. In other words, when participants in this group were not killing time, they tended to increase the audio
volume of their phones and frequently turned their screens on and off. Their switching to normal ringer mode was
also positively correlated with time-killing moments; this reflected their higher usage of the two relatively quiet
modes, vibrate and silent, when they were not killing time. All of this implies that these participants’ non-time-killing
moments were more often associated with making calls. As prior research has reported a high association between quiet
ringer modes and proactive phone-checking behaviors [12], the Group 2 behaviors we observed could have indicated
participants checking their phones frequently to avoid missing calls and/or notifications. The fact that these behaviors
might have been captured better by sensor data than by screenshot data could explain why – in this group alone – the
SensorOnly model performed better at identifying non-time-killing moments (i.e., higher specificity; true negative rate)
than the ScreenshotOnly model did.

Secondly, Group 1’s and Group 4’s fusion models both achieved AUROCs of 0.77, but the reasons for these two models
achieving this same value differed dramatically, as shown by the significant differences in their other performance
metrics. Specifically, whereas Group 1’s fusion model achieved significantly higher precision (0.88) than Group 4’s
fusion model did (0.77), Group 4’s fusion model performed particularly well in specificity (0.74): significantly higher
than any of the other models. In other words, Group 1’s fusion model was better at predicting its members’ time-killing
moments, whereas Group 4’s fusion model was better at predicting its members’ non-time-killing moments. As shown
in Table 5, Group 4’s key features for prediction were predominantly battery-related ones, which were negatively
correlated with time-killing moments. Also, while the feature number of charging events is not displayed in Table 5, its
correlation was -0.27 – higher than many other features in other user groups – suggesting that this group’s members’
non-time-killing moments were associated with high values of battery-related features, very likely linked to battery-
charging at non-time-killing moments. We further observed the app-usage distribution of Group 4’s members, as shown
in Fig. 6, and found that they played games much more often during non-time-killing moments than during time-killing
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Fig. 6. Percentage of application categories used by each user group when killing time and not killing time Note. Categories 1) related
to the launcher and 2) with percentages <2.5% are not displayed.

ones (37.2% vs. 21.7%); this percentage was also the greatest among the four groups. When we took a closer look at
the games they played, we found that 88.6% of their game time during non-time-killing moments was taken up by
Pokémon Go, and 95% of the time, they were correctly predicted by the model to be non-time-killing moments. Possibly
because of the large quantity of this distinctive behavior during non-time-killing moments, the Group 4 fusion model’s
true negative rate was particularly high. Interestingly, Group 1 was another group whose members spent considerable
time playing games, but in contrast to the Group 4 members, they were much more likely to do so during time-killing
moments, and rarely did so in non-time-killing ones. The Group 1 participants also often used social-media applications,
watched videos, and engaged in IM during their time-killing moments, but seldom did so during their non-time-killing
moments. It is noteworthy that Group 1’s SensorOnly model achieved much poorer specificity than its ScreenshotOnly
model, suggesting that the fusion model relied heavily on screenshot data to recognize non-time-killing moments.

Finally, Group 3’s fusion model achieved the lowest AUROC (0.72) among the four groups’ fusion models, an outcome
even worse than that of its ScreenshotOnly model (0.75). This was because, despite having the highest precision among
the four groups, it had a particularly low true-negative rate. In part, this distinctive characteristic of the model might be
attributed to it having the most unbalanced dataset: 80% of the instances were time-killing moments, and this might
have made it tend to predict Group 3 members’ moments as time-killing ones. The chief reason this user group’s dataset
was unbalanced was that its members used their phones mainly for killing time. Notably, correlations between features
and time-killing moments were also lowest for Group 3, suggesting that its members’ time-killing behaviors tended
to be diverse and not associated with strong patterns. Also, when we looked into the Group 3 members’ app-usage
distribution in their time-killing vs. non-time-killing moments, we found it to be likewise highly diverse and evenly
distributed. In short, a lack of clear patterns in phone usage during time-killing moments might explain the relatively
low performance of this user group’s SensorOnly model, which in turn seemed to lead the fusion model astray.

7 DISCUSSION

In the hope that time-killing moments might be leveraged for delivering content to smartphone users, we built models
to predict such moments and examined their performance. We found that a deep-learning model fusing screenshot
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and phone-sensor data could achieve a precision of 0.83 and an AUROC of 0.72. However, there are two even more
important takeaways of our results.

First, leveraging both phone-sensor and screenshot data in time-killing detection can achieve significantly better
performance than using either of these data sources by itself, and particularly good at distinguishing non-time-killing
moments from time-killing-ones. This is a vital capability that could help prevent a future commercial system from
sending users digital content at falsely detected time-killing-moments. Therefore, fusion-model based systems for time-
killing detection are likely to be more desirable, insofar as they are less likely than sensor-based ones to cause disruption
through incorrectly assuming a non-time-killing period is a time-killing one. Crucially, the fusion model has this
capability because, to a large extent, sensor features and the visual information extracted from screenshots complement
each other effectively. For example, while screenshots do not inform us about various aspects of phone status such as
battery, voice, and network, and are thus unhelpful in recognizing certain time-killing moments characterized by these
features, they contain rich and unambiguous contextual information about the activity a user is undertaking during time-
killing and non-time-killing-moments alike.We believe this complementary nature of the two data sources will be helpful
not only in the detection of time-killing behaviors, but also possibly in the detection of other behavior/moments on
phones and other devices, such as interruptible moments [2, 54, 56, 83], moments of boredom [64], mirco-waiting [11, 35],
and/or breakpoint [1, 29, 55]. In addition, we believe that our approach can usefully be employed in future research,
not only on opportune moments and interruptibility, but also more generally in fields that have already leveraged
screenshot data to analyze broader patterns of behavior, such as smartphone users’ media consumption [23].

The second key takeaway of our results is the benefits of clustering users according to their phone-usage behaviors
and then tailoring fusion models to the resulting clusters. In our own experiment, this resulted not only in better overall
performance than a general model that was built based on all users’ data, but also better performance than that of
most SensorOnly and ScreenshotOnly model. We attribute the superior performance achieved via this group-based
approach to the diverse time-killing patterns of our participants, which sometimes were even opposite to each other,
confusing the general model. A vivid example of this phenomenon was that participants in Group 1 tended to play
games during time-killing moments, whereas those in Group 4 tended to do so at non-time-killing ones. Unsurprisingly,
after these participants were separated, both their groups’ respective models achieved significantly higher AUROC
than the general model did.

The profound benefits of building user-cluster-based models were even manifested in the complementarity between
sensor data and screenshot data. This was because some participants’ behavior changes were associated more with
changes in sensor data than phone-screen data, others’ were opposite. For example, Groups 1, 2, and 4 exhibited
phone-usage behavior that was clearly associated with time-killing moments (see Table 5). Thus, the extra information
from sensors complemented that from screenshots, because each captured some aspect(s) of time-killing moments
that the other missed. In contrast, Group 3’s fusion model achieved lower AUROC than its ScreenshotOnly model.
This may provide an example of conflicting instead of complementary information provided by the two data sources:
i.e., the sensor information collected from this group of participants did not assist the fusion model in distinguishing
time-killing moments from non-time-killing ones. This can also be seen from the low correlations between sensor
features and this group’s time-killing behaviors.

These results suggest that the effectiveness of phone sensor data for predicting time-killing moments depends heavily
on phone users’ behavior patterns. They also imply that decisions about whether it is worthwhile to engage in the
privacy-intrusive and phone-resource-demanding process of capturing of users’ screenshots should take account of the
objective of such detection. For example, the SensorOnly models of both Group 1 and Group 3 achieved higher recall
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than their fusion models; so, if one’s objective were to capture as many time-killing moments as possible, capturing
only sensor information on the phones of users of the Group 1 and Group 3 types would be adequate to purpose. On the
other hand, if one’s main aim was to reduce falsely detected time-killing moments, leveraging screenshot data would
generally be more helpful.

In sum, we believe the approach we have presented in this paper will help researchers and practitioners interested in
leveraging screenshot data for predicting or detecting specific smartphone-user behavior and moments. In particular,
we expect it to be useful for those interested in detecting time-killing moments for delivering content to which people
may not be receptive at other moments.

8 LIMITATION

This research has several limitations. First, its study design was inherently reliant on the participants’ in-the-wild
annotations, which may not be always reliable. Indeed, our observations of the dataset indicated that some screenshots
were mistakenly labeled, which could account for some of our models’ apparent inaccuracies. Second, although we
strove to ease our participants’ screenshot-annotation burdens – on the grounds that otherwise, their compliance
would have been much lower – it is possible that the user-friendly drag-and-drop interface we developed to address
this problem facilitated mislabeling. That is, some subjects might have considered it more efficient, at least in some
cases, to label a whole block of data at once. Third, our dataset was established based on a small (n=36) sample of
smartphone users in Taiwan; all our participants were under 55 years old, and half of them were students. As a result,
it is unclear whether our models’ detection performance can be generalized to populations that display even more
diverse time-killing behaviors or different phone-usage patterns. For example, we believe that such behaviors may
be clustered into more types than the four that our small sample suggested. Thus, longer-term and larger-scale data
collection could lead to more reliable results. Finally, although we collected other aspects of the participants’ tendencies
and characteristics that might have affected their time-killing behaviors, such as their demographic characteristics and
occupations, we did not include them in this paper. We also did not analyze their notification-attendance behavior
during time-killing moments. These aspects should be given greater attention in future studies.

9 CONCLUSION

In this paper, we leveraged both phone-sensor and screenshot data to predict time-killing moments using deep-learning
techniques. We developed an Android app for collecting labeled time-killing data, and conducted data collection with
36 participants over 14 days, resulting in a total of 967,466 pairs of annotated phone-sensor data and screenshots for
training our time-killing models. We have shown that phone-sensor and screenshot data each have their advantages in
such detection tasks; and that, due to them being complementary to each other, integrating these two data sources can
yield better model performance than using either of them by itself can. We also have shown that separating users into
groups according to their phone-usage patterns and building individual time-killing models for each group can achieve
strong overall performance, with most group-specific models also achieving better performance than a general model.
Additionally, we have provided insights into how and why the effectiveness of sensor data and phone screenshots
as a basis for detecting time-killing moments vary across different user groups. We believe this paper offers a good
starting point for researchers and practitioners who are interested in leveraging both screenshot and sensor data in their
prediction tasks, and that it will be especially useful for practitioners who want to incorporate time-killing detection
into their applications.
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